Assignment 9

Hand in no. 1, 4, 7, and 8 by November 16.

- 1. Consider Theorem 3.4. Show that the function Φ maps $B_r(x_0)$ to $B_R(y_0)$ has an inverse, that is, there is a continuous function G in $B_R(y_0)$ back to $B_r(x_0)$ satisfying $\Phi(G(y)) = y$ for all $y \in \overline{B_R(y_0)}$.
- 2. Consider the function

$$h(x,y) = (x - y^2)(x - 3y^2), \quad (x,y) \in \mathbb{R}^2.$$

Show that the set $\{(x, y) : h(x, y) = 0\}$ cannot be expressed as a local graph of a C^1 -function over the x or y-axis near the origin. Explain why the Implicit Function Theorem is not applicable.

3. Consider the mapping from \mathbb{R}^2 to itself given by $f(x,y) = x - x^2$, g(x,y) = y + xy. Show that it has a local inverse at (0,0). And then write down the inverse map so that its domain can be described explicitly.

In the following the Initial Value Problem (IVP) refers to x' = f(t, x), $x(t_0) = x_0$, where f satisfies the Lipschitz condition in some rectangle containing (t_0, x_0) in its interior, see Notes for details.

- 4. Solve the (IVP) for $f(t,x) = \alpha t(1+x^2), \alpha > 0$, $t_0 = 0$, and discuss how the (largest) interval of existence changes as α and x_0 vary.
- 5. Optional. Deduce Picard-Lindelöf Theorem based on the ideas of perturbation of identity. Hint: Take a particular

$$y = \int_{t_0}^t f(t, x_0) dt$$

in the integral equation as $x + \Psi(x) = y$ for some Ψ .

- 6. Show that the solution to IVP belongs to C^{k+1} (as long as it exists) provided $f \in C^k$ for $k \ge 1$. In particular, $y \in C^{\infty}$ provided $f \in C^{\infty}$.
- 7. Let $f \in C(D), D = (a, b) \times (c, d)$, satisfying the Lipschitz condition. Let x_1 and x_2 be two solutions to (IVP) defined on open subintervals I and J in (a, b) respectively with $x_1(t_0) = x_2(t_0)$ at some $t_0 \in I \cap J$. Assuming that their graphs lie in D. Show that they are equal on $I \cap J$.
- 8. Fill out the details for the Picard-Lindeöf Theorem for systems (Theorem 3.12) in Notes.
- 9. Show that there exists a unique solution h to the integral equation

$$h(x) = 1 + \frac{1}{\pi} \int_{-1}^{1} \frac{1}{1 + (x - y)^2} h(y) dy,$$

in C[-1, 1]. Also show that h is non-negative.